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Overview

• Stellar angular sizes
• The right kind of telescope
• The Michelson Stellar Interferometer
• Coherence and Optical Delay
• Combination of EM waves
• Fringes and visibility
• The visibility function and model geometries
• Calibrators
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Stellar Angular Sizes
(Back of the envelope)
• Use the sun as our prototype
• Solar vs. bright star apparent brightness:
• ∆V = -26  :
→ 2.5 × 1010 change in apparent brightness

• Since brightness scales with disk area:

Since the sun is ~30’ = 1800” → θ* = 12 mas

• Newton realized stars were of this size order (mas) 
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Right Kind of Telescope 
• Telescope resolution goes 

as λ / D (radians)
• Very largest stars are ~50 

mas
– Can get away with D~2m in 

the visible (8m in K-band)
• Typical parameters are 

λ~1µm, θ~1 mas
– Need D~100m
– Leads us to interferometry
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Coherence of the fringes
The coherence time for a fringe is the length of time before a 

significant phase glitch occurs.

Likewise, this can be viewed in terms of a coherence length.

Using a Johnson K-band filter (λλλλ=2.2 µµµµm, ∆λ∆λ∆λ∆λ=0.4 µµµµm), the coherence 
length for the fringe is 12 µµµµm. The smaller the bandwidth, the larger 

the coherence time.
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The Optical Delay
Since the Earth turns about its axis, the stars in the sky move with 
respect to the interferometer. This motion must be compensated by 

the optical delay line, such that

With OD = optical delay, B = projected baseline , z = the zenith angle 
of the star and L is the latitude of the interferometer.

Near zenith (z = 0 deg), the maximum motion (at the equator) is 
about dz/dt = 7.3 x 10-5 rad/sec.

For a baseline of 38 m at latitude 31o, the change in OD is 
2.4 mm/sec.

This rate of change must be compensated to an accuracy of the 
coherence length, lc.
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Combination of two EM waves

Consider two EM waves:

E1 = a1 exp (ik*OP1-iωωωωt) E2 = a2 exp (ik*OP2-iωωωωt)

Combining the two waves physically means taking the complex conjugate 
mathematically:

I = E1 E2
* =                                     cos (k∆∆∆∆)

where ∆∆∆∆ = (OP2 - OP1)

 I I 2  I  I  I 2121T ++=
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Monochromatic Point Response Function

Now, assume the intensities from both apertures are equal (I1 = I2 = I). Then,
the point-response function for a source at infinity becomes

Rλλλλ
P (∆) ∆) ∆) ∆) ≡≡≡≡ – 1 = cos (k∆∆∆∆).).).).

However, this is a perfect-world scenario. The light collected by a real 
interferometer is not monochromatic (infinitely small bandwidth), but 

polychromatic.
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Effects of Spectral Bandwidth
Consider a rectangular filter of width δδδδσσσσ and center σσσσ0:

Average the response
Over the bandwidth:

Use simple filter function F:

Evaluate at the limits:

∫
∫=

σ

σσ

d

FdR
RP

∫
+

−

=
2/

2/

0

0

1 σ

σ

δσ

δσ
σ

σ

σ
δ

dR

)2sin(
2

1 ∆= πσ
πδσ









∆

∆∆=
)(

)sin()2cos(
0

0
0 πδ

πδπσ



Band-averaged response function
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But, we want to measure a star’s size!
We need to calculate the response to an extended 

source. Where to put the beam?
Beam undersamples object Beam reoriented for better resolution



Extended sources
Done exactly the same as for a point source, but now we need to 

sum over all the point sources (that make up the extended source) 
within the beam.

FTOT +      Intensity addition

Rearranging terms, the extended response becomes:
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…
Just as in the case for a point-response, we have:

We use our rectangular filter function, and thus:

The response to an extended source is the convolution of the point-response 
function with the intensity function of the source!
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The visibility function, when transformed into the Fourier (or “UV”) plane is 

defined as

We take the Fourier transform

which yields

and thus
the fringe visibility is the Fourier transform of the dual aperture function
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Let’s look at a “uniform disk”
Stars, to first order, are nothing more than a uniformly-bright 

circle on the sky as seen by the interferometer.

We introduce a “top-hat” function.
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So, we insert a model geometry. In this case, a top-hat function (uniformly-
bright disk) is used, with the substitution (z = 2ππππrs) yields

Performing the integration and utilizing

yields the visibility function for a uniform disk:

dzzzJ
sa

s
sG )(

0
2

2
1)( 02 ∫=

π
π

*

*
2

)0()0(
)()(

GG
sGsGV =

2
12 )(2|| 








 /  Β 
 , /  Β =

λθπ
λθπJV



18

Fringe Visibility
• Constructive & 

destructive 
interference of light

• Fringe contrast or 
visibility:

• Calibration issues
– Detector linearity
– Zero point 

measurement
– Noise characterization
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Visibility Function
• For a ‘uniform disk’, 

visibility matches:

B is the projected baseline
θ is the stellar disk size
λ is the instrumental wavelength

• Baseline, wavelength 
known
– Can solve for θ

• Use V2 instead of V
– Unbiased estimator of 

visibility
– See Colavita (1999)
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Other Geometries

Geometry Intensity function Visibility Function Parameters
_________________________________________________________________________________

Uniform disk H(r≤a)=1, H(r>a)=0

Gaussian Disk σ is the FWHM of the gaussian

Thin circular ring width << diameter, d

Two displaced 
point sources ρ = separation distance
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Binary stars
Let’s say we wish to resolve a binary star orbit. We assume the two 

stars are uniform disks (UD), such that

The expects squared visibility of a binary star is given by:

where V1 and V2 are the visibility moduli for the two components, r
is the apparent brightness ratio, B is the projected baseline vector, 
and s is the primary-secondary angular separation vector on the 

plane of the sky.
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Binary stars

• Use the visibility data to test against a 
model orbit.

• Determine best-fit orbital parameters: 
separation, eccentricity, period, etc.

• Use Kepler’s Laws and radial velocity data 
to determine star masses.

• From here, can investigate binary star 
evolution! (Do stars in binary systems 
evolve in the same way as a single star? 
BIG question in astrophysics today.)
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Other geometries

• Stars with disks (YSOs, T Tauri stars, PPN, 
…)

• Multiple-star systems
• Departures from spherical symmetry: 

elongated stars
• Stellar photospheric phenomena: star spots, 

limb darkening/brightening, center-to-limb 
variation

• Multi-wavelength studies to determine 
chemistry/geometry
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Visibility Function: Calibrators
• Atmospheric and 

instrumental effects reduce 
system V2

• Observe ‘unresolved’ 
sources to establish system 
response
– Use an estimate of size
– Assume V2 gains are equal 
– Gain factor is analogous to 

Strehl ratio
– Flattening portion of 

visibility function  → errors 
in calibrator size do not 
translate into errors in 
system V2
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Summary
• The largest telescopes can resolve down to ~ 50 mas
• Thus, larger “apertures” are needed
• Interferometers with baselines ~ 100 m resolve to 1 mas         

at λλλλ = 1 µµµµm
• The quantity measured by an interferometer is called the visibility
• The visibility is the Fourier transform of the dual aperture 

function
• The interpretation of the visibility is based on model-dependent 

assumptions (uniform disk, gaussian disk, 2 point sources, etc).
• Interferometers aren’t perfect instruments: calibrator stars are 

needed to normalize target visibilities.
• Two-telescope interferometer data is entirely model-dependent (no 

reference for the phase information).
• Number of apertures (N) reduces model-dependence: fraction of 

information from observation goes as (N-2) / N
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